Search Constraints
Search Results
-
ArticleChirayil, NimiBackground: Abnormalities in intracellular calcium (Ca) cycling during Ca overload can cause triggered activity because spontaneous calcium release (SCR) activates sufficient Ca-sensitive inward currents to induce delayed afterdepolarizations (DADs). . . .
-
ArticleWasserstrom, John A.Mutations in the ryanodine receptor (RyR) have been linked to exercise-induced sudden cardiac death. However, the precise sequence of events linking RyR channel mutations to a whole heart arrhythmia is not completely understood. In this paper, we appl . . .
-
ArticleArora, RishiBackground: Abnormalities in intracellular calcium (Ca) cycling during Ca overload can cause triggered activity because spontaneous calcium release (SCR) activates sufficient Ca-sensitive inward currents to induce delayed afterdepolarizations (DADs). . . .
-
ArticleAsfaw, MesfinIt is well known that various cardiac arrhythmias are initiated by an ill-timed excitation that originates from a focal region of the heart. However, up to now, it is not known what governs the timing, location, and morphology of these triggered beats . . .
-
ArticleAistrup, Gary L.In cardiac myocytes, calcium (Ca) can be released from the sarcoplasmic reticulum independently of Ca influx from voltage-dependent membrane channels. This efflux of Ca, referred to as spontaneous Ca release (SCR), is due to Ryanodine receptor fluctua . . .
-
ArticleAsfaw, MesfinIt is well known that various cardiac arrhythmias are initiated by an ill-timed excitation that originates from a focal region of the heart. However, up to now, it is not known what governs the timing, location, and morphology of these focal excitatio . . .