Search Constraints
1 - 2 of 2
Number of results to display per page
Search Results
- Creator:
- Farley, Kathleen A., Saleeby, Z., Saleeby, J., and Cecil, M. Robinson
- Description:
- Thermomechanical models of mantle lithosphere removal from beneath the southern Sierra Nevada region, California (USA), predict a complex spatiotemporal pattern of vertical surface displacements. We evaluate these models by using (U-Th)/He thermochronometry, together with other paleothermometry estimates, to investigate such topographic transients. We target Tertiary strata from the Kern arch, a crescent-shaped active uplift located in the southeastern San Joaquin Basin, along the western flank of the southern Sierra Nevada. Kern arch stratigraphy provides a unique record of subsidence and exhumation in a sensitive region immediately adjacent to the delaminating mantle lithosphere at depth. Detrital apatite (U-Th)/He ages from Oligocene-Miocene sandstones collected in Kern arch well cores indicate postdepositional heating to temperatures beyond those corresponding with their present burial depths. When integrated with available geologic and stratigraphic constraints, temperature-time modeling of thermochronometric data suggests partial He loss from apatites at temperatures of 70-90 °C, followed by exhumation to present burial temperatures of 35-60 °C since ca. 6 Ma. By constraining the late Cenozoic geothermal gradient to ?25 °C/km, our results imply 1.0-1.6 km of rapid (?0.4 mm/yr) subsidence and sedimentation, and then subsequent uplift and exhumation of southeastern San Joaquin Basin strata in latest Miocene-Quaternary time. Stratigraphic and geomorphic relations further constrain the principal burial episode to ca. 2.5 Ma or later, and exhumation to ca. 1 Ma or later. Subtle differences in the maximum temperatures achieved in various wells may reflect differing degrees of tectonic subsidence and sedimentation as a function of growth faulting and distance from the range front. Our results are consistent with estimates of surface subsidence and uplift from Sierran delamination models, which predict a minimum of ?0.7 km of tectonic subsidence in regions retaining mantle lithosphere adjacent to the area of delamination, and a minimum of ?0.8 km of rock uplift in regions where delamination occurred recently. We attribute the marked pulse of tectonic subsidence in the San Joaquin Basin to viscous coupling between the lower crust and a downwelling mass in the delaminating slab. The ensuing episode of exhumation is interpreted to result from the northwestward peeling back of the slab and the associated replacement of dense lithosphere with buoyant asthenosphere that drove rapid rock and surface uplift.
- Resource Type:
- Article
- Identifier:
- 1553-040X
- Campus Tesim:
- Northridge
- Creator:
- Kylander-Clark, Andrew, Stowell, Harold H., Shen, R., Schwartz, Joshua J., Hacker, Bradley, Tulloch, Andy, Klepeis, Keith A., Lin, Z.X., Ren, Y.J., Deng, W.Y., Sheng, Donna, Coble, Matthew, Xing, D.Y., and Sheng, L.
- Description:
- The exhumed Fiordland sector of Zealandia offers a deep-crustal view into the life cycle of a Cordilleran-type orogen from final magmatic construction to extensional orogenic collapse. We integrate U-Pb thermochronologic data from metamorphic zircon and titanite with structural observations from >2000 km2 of central Fiordland to document the tempo and thermal evolution of the lower crust during the tectonic transition from arc construction and crustal thickening to crustal thinning and extensional collapse. Data reveal that garnet granulite facies metamorphism and partial melting in the lower crust partially overlapped with crustal thickening and batholith construction during emplacement of the Western Fiordland Orthogneiss (WFO) from 118 to 115 Ma. Metamorphic zircons in metasedimentary rocks yield 206Pb/238U (sensitive high-resolution ion microprobe-reverse geometry) dates of 116.3-112.0 Ma. Titanite laser ablation split stream inductively coupled plasma-mass spectrometry chronology from the same rocks yielded complex results, with relict Paleozoic 206Pb/238U dates preserved at the margins of the WFO. Within extensional shear zones that developed in the thermal aureole of the WFO, titanite dates range from 116.2 to 107.6 Ma and have zirconium-in-titanite temperatures of ∼900-750 °C. A minor population of metamorphic zircon rims and titanites in the Doubtful Sound region yield younger dates of 105.6-102.3 Ma with corresponding temperatures of 740-730 °C. Many samples record Cretaceous overdispersed dates with 5-10 m.y. ranges. Core-rim traverses and grain maps show complex chemical and temporal variations that cannot easily be attributed to thermally activated volume diffusion or simple core-rim crystallization. We interpret these Cretaceous titanites not as cooling ages, but rather as recording protracted growth and/or crystallization or recrystallization in response to fluid flow, deformation, and/or metamorphic reactions during the transition from garnet granulite to upper amphibolite facies metamorphism.We propose a thermotectonic model that integrates our results with structural observations. Our data reveal a clear tectonic break at 108-106 Ma that marks a change in processes deep within the arc. Prior to this break, arc construction processes dominated and involved (1) emplacement of mafic to intermediate magmas of the Malaspina and Misty plutons from 118 to 115 Ma, (2) contractional deformation at the roof of the Misty pluton in the Caswell Sound fold-thrust belt from 117 to 113 Ma, and (3) eclogite to garnet granulite facies metamorphism and partial melting over >8 m.y. from 116 to 108 Ma. These processes were accompanied by complex patterns of lower crustal flow involving both horizontal and vertical displacements. After this interval, extensional orogenic collapse initiated along upper amphibolite facies shear zones in the Doubtful Sound shear zone at 108-106 Ma. Zircon and titanite growth and/or crystallization or recrystallization at this time clearly link upper amphibolite facies metamorphism to mylonitic fabrics in shear zones. Our observations are significant in that they reveal the persistence of a hot and weak lower crust for ≥15 m.y. following arc magmatism in central Fiordland. We propose that the existence of a thermally weakened lower crust within the Median Batholith was a key factor in controlling the transition from crustal thickening to crustal thinning and extensional orogenic collapse of the Zealandia Cordillera.
- Resource Type:
- Article
- Identifier:
- 1553-040X
- Campus Tesim:
- Northridge