Use of Specific Glycosidases to Probe Cellular Interactions in the Sea Urchin Embryo

We present an unusual and novel model for initial investigations of a putative role for specifically conformed glycans in cellular interactions. We have used α- and ß-amylase and α- and ß-glucosidase in dose–response experiments evaluating their effects on archenteron organization using the NIH designated sea urchin embryo model. In quantitative dose–response experiments, we show that defined activity levels of α-glucosidase and ß-amylase inhibited archenteron organization in living Lytechinus pictus gastrula embryos, whereas all concentrations of ß-glucosidase and α-amylase were without substantial effects on development. Product inhibition studies suggested that the enzymes were acting by their specific glycosidase activities and polyacrylamide gel electrophoresis suggested that there was no detectable protease contamination in the active enzyme samples. The results provide evidence for a role of glycans in sea urchin embryo cellular interactions with special reference to the possible structural conformation of these glycans based on the differential activities of the α- and ß-glycosidases.