Article

Understanding molecular structure dependence of exciton diffusion in conjugated small molecules

First-principles simulations are carried out to understand molecular structure dependence of exciton diffusion in a series of small conjugated molecules arranged in a disordered, crystalline, and blend structure. Exciton diffusion length (LD), lifetime, and diffusivity in four diketopyrrolopyrrole derivatives are calculated and the results compare very well with experimental values. The correlation between exciton diffusion and molecular structure is examined in detail. In the disordered molecule structure, a longer backbone length leads to a shorter exciton lifetime and a higher exciton diffusivity, but it does not change LD substantially. Removal of the end alkyl chains or the extra branch on the side alkyl chains reduces LD. In the crystalline structure, exciton diffusion exhibits a strong anisotropy whose origin can be elucidated from the intermolecular transition density interaction point of view. In the blend structure, LD increases with the crystalline ratios, which are estimated and consistent with the experimental results.

Relationships

Items