Quantum simulation of materials at micron scales and beyond

We present a multiscale modeling approach that can simulate multimillion atoms effectively via density-functional theory. The method is based on the framework of the quasicontinuum (QC) approach with orbital-free density-functional theory (OFDFT) as its sole energetics formulation. The local QC part is formulated by the Cauchy-Born hypothesis with OFDFT calculations for strain energy and stress. The nonlocal QC part is treated by an OFDFT-based embedding approach, which couples OFDFT nonlocal atoms to local region atoms. The method—QCDFT—is applied to a nanoindentation study of an Al thin film, and the results are compared to a conventional QC approach. The results suggest that QCDFT represents a new direction for the quantum simulation of materials at length scales that are relevant to experiments.