Modeling variation in interaction strength between barnacles and fucoids.

The strength by which species interact can vary throughout their ontogeny, as environments vary in space and time, and with the density of their populations. Characterizing strengths of interaction in situ for even a small number of species is logistically difficult and may apply only to those conditions under which the estimates were derived. We sought to combine data from field experiments estimating interaction strength of life stages of the barnacle, Semibalanus balanoides, on germlings of Ascophyllum nodosum, with a model that explored the consequences of variability at per capita and per population levels to the abundance of year-old algal recruits. We further simulated how this interaction affected fucoid germling abundance as the timing of their respective settlements varied relative to one another, as occurs regionally across the Gulf of Maine, USA. Juvenile S. balanoides have a weak estimated per capita effect on germlings. Germling populations are sensitive to variation in per capita effects of juvenile barnacles because of the typically large population sizes of the latter. However, high mortality of juvenile barnacles weakens the population interaction strength over time. Adult barnacles probably weakly facilitate fucoid germlings, but greater survival of adults sustains the strength of that interaction at the population level. Germling abundance is positively associated with densities of adult barnacles and negatively associated with that of juvenile barnacles. Metamorphosing cyprid larvae have the strongest per capita effect on germling abundance, but the interaction between the two stages is so short-lived that germling abundance is altered little. Variation in the timing of barnacle and A. nodosum settlement relative to one another had very little influence on the abundance of yearling germlings. Interactions between barnacles and germlings may influence the demographic structure of A. nodosum populations and the persistence of fucoid-dominated communities on sheltered rocky shores in New England.