Thesis

Genetic diversity, population structure and connectivity of Millepora alcicornis (Hydrozoa: Anthomedusae: Milleporidae) in the Florida Reef Tract

Coral reefs are experiencing global declines due to changing environmental conditions triggered by climate change and anthropogenic effects impacting important reef-building organisms and their inhabitants. Millepores are calcareous hydrocorals found on shallow reefs worldwide, however little information is known about their genetic diversity and population biology. The present study sought to determine the population structure and genetic diversity of Millepora alcicornis, a branching fire coral, in reefs found in the Florida Reef Tract (FRT) and population connectivity was inferred. Five microsatellite markers were used to detect genetic differentiation between 12 sampling sites from reefs from the middle Keys and Miami within the FRT. A single panmictic population of M. alcicornis in the FRT (K=1; FST=0.001) was found with moderate levels of genetic diversity (Ho=0.426, SE=0.023; Na=6.0, SE=0.763) inferring high connectivity and gene flow among reefs in the FRT. High connectivity of M. alcicornis in the FRT along with moderate levels of genetic diversity is a hopeful indication that M. alcicornis will be better able to acclimate to changing environmental conditions.

Le relazioni

Elementi