TIME SERIES ANALYSIS AND FORECASTING OF CRIME DATA

A Project

Presented to the faculty of the Department of Computer Science

California State University, Sacramento

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Computer Science

by

Divya Sindhuri Devarakonda

SPRING
2019
TIME SERIES ANALYSIS AND FORECASTING OF CRIME DATA

A Project

by

Divya Sindhuri Devarakonda

Approved by:

__________________________________, Committee Chair
Dr. Scott Gordon

__________________________________, Second Reader
Dr. Meiliu Lu

Date
Student: Divya Sindhuri Devarakonda

I certify that this student has met the requirements for format contained in the University format manual, and that this project is suitable for shelving in the Library and credit is to be awarded for the project.

________________________, Graduate Coordinator
Dr. Jingsong Ouyang

Date

Department of Computer Science
USA has been grappling with crime for decades now and had made significant improvement. However, crime remains to be one of the core societal problems. To build a safer society, we need to take advantage of 21st century’s technology. With current technologies and data availability it is possible to analyze crime patterns and forecast future occurrences of crime. This information is useful for police to increase safety measures and alert the local residents. ‘Predictive policing’ is one such aspect under implementation in few states by the government of USA. This project analyzes and compares the patterns of ‘Chicago’ and ‘Los Angeles’ crime based on history and forecasts future crime rate. These results potentially could help immigrants to choose their area of residence and can help tourists, students and travelers to plan their trips in safer months. In this project, ARIMA, Auto ARIMA, Holts winter and Facebook prophet forecasting models are experimented on Chicago and Los Angeles crime Data.
Experimental results show that Holt’s winter and Facebook prophet models give accurate forecasting with Mean Absolute Percentage Error (MAPE) of 9 on one year ahead forecasts.

_________________________, Committee Chair
Dr. Scott Gordon

Date
DEDICATION

To My husband & Parents
ACKNOWLEDGEMENTS

I thank my professor, Dr. Meiliu Lu, for her guidance and encouragement throughout the project. I thank her for helping me to shape my project idea and giving me good feedback at every step of the project.

I thank professor, Dr. Scott Gordon for reviewing my report and encouraging me.

Lastly, I would like to thank my parents for trusting me and encouraging me to achieve my goals.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>vii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>viii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>x</td>
</tr>
<tr>
<td>Chapter</td>
<td></td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Process Flow</td>
<td>2</td>
</tr>
<tr>
<td>2. LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>3. TECHNOLOGIES USED</td>
<td>6</td>
</tr>
<tr>
<td>4. DATA PROCESSING</td>
<td>9</td>
</tr>
<tr>
<td>5. ANALYSIS OF CRIME DATA</td>
<td>13</td>
</tr>
<tr>
<td>6. TIME SERIES FORECASTING OF CRIME DATA</td>
<td>22</td>
</tr>
<tr>
<td>6.1 ARIMA</td>
<td>23</td>
</tr>
<tr>
<td>6.2 Auto ARIMA</td>
<td>26</td>
</tr>
<tr>
<td>6.3 Holt’s Winter</td>
<td>27</td>
</tr>
<tr>
<td>6.4 Facebook Prophet</td>
<td>31</td>
</tr>
<tr>
<td>7. ERROR MEASUREMENT</td>
<td>35</td>
</tr>
<tr>
<td>8. CONCLUSION</td>
<td>38</td>
</tr>
<tr>
<td>References</td>
<td>40</td>
</tr>
<tr>
<td>Tables</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>1. Error comparisons of forecasting models</td>
<td>36</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Design Architecture ..</td>
<td>3</td>
</tr>
<tr>
<td>2. Raw data before pre-processing ..</td>
<td>10</td>
</tr>
<tr>
<td>3. Crime data after preprocessing ...</td>
<td>11</td>
</tr>
<tr>
<td>4. Crime count at 4-hour time interval of a day</td>
<td>13</td>
</tr>
<tr>
<td>5. Weekly occurrences of crime of Chicago ..</td>
<td>14</td>
</tr>
<tr>
<td>6. Weekly occurrences of crime of Los Angeles</td>
<td>15</td>
</tr>
<tr>
<td>7. Monthly crime rate of Chicago ...</td>
<td>16</td>
</tr>
<tr>
<td>8. Monthly crime rate of Los Angeles ...</td>
<td>16</td>
</tr>
<tr>
<td>9. Seasonal crime rate of Chicago ..</td>
<td>17</td>
</tr>
<tr>
<td>10. Seasonal crime rate of Los Angeles ...</td>
<td>18</td>
</tr>
<tr>
<td>11. Heat Map of Chicago Crime ..</td>
<td>19</td>
</tr>
<tr>
<td>12. Heat Map of Los Angeles Crime ..</td>
<td>19</td>
</tr>
<tr>
<td>13. Top 10 Crime Types in Chicago ..</td>
<td>20</td>
</tr>
<tr>
<td>14. Top 10 Crime happening Locations in Chicago</td>
<td>21</td>
</tr>
<tr>
<td>15. Chicago Crime Time Series ...</td>
<td>24</td>
</tr>
<tr>
<td>16. Dicky Fullers stationarity test on Chicago time series data</td>
<td>24</td>
</tr>
<tr>
<td>17. Dicky Fuller’s stationary test results on Chicago crime Data</td>
<td>25</td>
</tr>
<tr>
<td>18. ARIMA forecasting with Chicago crime data</td>
<td>26</td>
</tr>
<tr>
<td>No.</td>
<td>Section</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>19</td>
<td>Chicago crime forecasting with Auto ARIMA</td>
</tr>
<tr>
<td>20</td>
<td>Train, Test and Forecasting of Chicago Crime Data</td>
</tr>
<tr>
<td>21</td>
<td>Future forecasting (2019 to 2012) of Chicago Crime</td>
</tr>
<tr>
<td>22</td>
<td>Future forecasting (2019 to 2012) of Los Angeles crime</td>
</tr>
<tr>
<td>23</td>
<td>Forecasting with Facebook prophet library on Chicago data</td>
</tr>
<tr>
<td>24</td>
<td>Components of trend in Chicago crime data</td>
</tr>
<tr>
<td>25</td>
<td>Forecasting with Facebook prophet library on Los Angeles data</td>
</tr>
<tr>
<td>26</td>
<td>Components of trend in Chicago crime data</td>
</tr>
<tr>
<td>27</td>
<td>Example to illustrate MAPE calculation</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Overview

‘Time Series Analysis and Forecasting’ states that any information periodically recorded with time can be used for forecasting a future event related to the information. As a Data Analytics intern at company 8x8 Inc., I learned concepts of time series analysis. My project work at that company involved in forecasting and analyzing call data of their customers. This motivated me to start my Masters project to analyze and forecast crime data of Chicago and Los Angeles. Chicago and Los Angeles are two cities in USA where criminal activities take place more frequently. According the website ‘https://www.neighborhoodscout.com’ [1] Chicago crime index is 8 and Los Angeles crime index 14 (crime index 100 is considered safest). By applying modern technology forecasting techniques to these cities crime data, future crime rates can be forecasted. This project analyzes crime data and gives various visualizations for easy understanding of the results. It also uses past 8 years’ crime data from United States government website [2] to forecast future crime rate.

This crime analysis helps the government, police and residents of the cities in various ways. This project’s analysis and forecasting could be leveraged by law enforcement agencies to gain a pulse on the future occurrences of crime up to a year ahead, there by
contributing to enhancement of security. As the project analyzes crime over past 8 years, results reveal that summers have higher rate of crime than winters in Chicago. Analysis also highlights that Fridays and late evenings have greater odds for criminal activities. This information could help communities in different ways, say, alerting the neighborhood watch or patrol departments during the time of high probability for a crime or suggesting students or business travelers to plan their stay a bit safer.

For Time Series Forecasting in this project forecasting methods like ‘ARIMA’ (Auto Regressive Integrated Moving Average), ‘Auto ARIMA’, ‘Holt’s Winter Exponential Smoothening’ and ‘Facebook Prophet Library’ are used. ARIMA model is observed to be a bit more complicated as it includes the accurate derivation of p, d, q values. Auto ARIMA, Holt’s Winter and Facebook prophet library resulted in better predictions. Holt’s Winter forecasting is good for data with high seasonality and trend. This project observed that Facebook prophet and Holt’s winter forecasting model resulted in accurate forecast with Mean Absolute Percentage Error (MAPE) less than 10.

1.2 Process Flow

In this report chapter 2 states ‘Literature Review’ of the Time Series Analysis and Forecasting of Crime Data. Various papers published in this area are discussed along with their implementation methods and results. Chapter 3 is all about technologies used for the project implementation. Chapter 4 discusses about the data sets used for the project and preprocessing techniques implemented for the data analysis. Chapter 5 talks about the
crime analysis and illustrates different visualizations on Chicago and Los Angeles crime patterns. Chapter 6 and 7 states different forecasting methods, their results and error measurement techniques. Chapter 8 and 9 has conclusion and future work for this project.

Comprehensive design architecture of this project is described in figure 1. Datasets collected for the project are cleaned and preprocessed as mentioned in chapter 4. The preprocessed data is used to create visualizations and to forecast crime rate using different forecasting models mentioned in chapter 6. Later the forecast model error is calculated using Mean Absolute Percentage Error (MAPE) and the results of crime forecasting for Chicago and Los Angeles are discussed.

Figure 1: Design Architecture
Chapter 2
Literature Review

In recent times, data analytics became instrumental in addressing a lot of modern world problems. Using data analytics, we can identify patterns in crime data, analyze and visualize them to gain different perspectives on criminal activity. Forecasting can help us equip our self-better to tackle crime. This chapter mentions a few ‘Crime Forecasting and Analysis’ articles and states their implementation methods with results.

reviews of researches on various implementation of data mining and the guidelines to solve the crimes by using data mining techniques. An article from IEEE internal conference, ‘A multivariate time series clustering approach for crime trends prediction’ [8] proposes dynamic time warping and parametric Minkowski model to find similar crime trends among various crime sequences of different crime locations and subsequently use this information for future crime trends prediction. The algorithm has been tested on real-world datasets provided by Indian National Crime Records Bureau performing a separated analysis for various types of crimes (i.e., murder, kidnapping, etc.).

Out of all the mentioned work in the area of crime forecasting, IEEE article ‘Forecasting Crimes Using Autoregressive Models’ [1] with ARIMA stands closer to this project work. This project results observes that Facebook prophet and Holt’s winter are good models for forecasting crime data with Mean Absolute Percentage Error(MAPE) of 8.9 and 4.2. This is a good improvement in forecasting compared to ‘Forecasting Crimes Using Autoregressive Models’ with MAPE of 16. Next chapter in this report discuss about the technologies used to implement the analysis and forecasting.
Chapter 3
Technologies Used

This chapter mentions about the technologies installed and used for implementing models and visualizations. Technical programming is performed in ‘Python’ using its AI and Machine Learning libraries.

Python:

Python is a high level, Object Oriented Programming language. It is a general-purpose programming language with rich library support for machine learning models and stat models. Forecasting models discussed in this project are imported from ‘statsmodels’ python library. Next important library for the project is ‘pandas’, which has multiple methods to work with big data.

Pandas:

Python Pandas is one of the most reliable library when it comes to handling large data sets. Its performance and intuitiveness has made it one of the most popular libraries available for data analysis. There might be other libraries out there but ‘pandas’ is very easy to use and work with.
Statsmodels:

Python libraries include ‘statsmodels’ which gives capacity for the evaluation and estimation of different statistical models, for performing statistical tests and data exploration. ‘Auto Regressive Moving Window’ (ARIMA), Auto ARIMA, Holt’s Winter Exponential smoothing models discussed in this project from statsmodel library.

Facebook Prophet:

Prophet is open source software by Facebook for Time Series Forecasting. Prophet works good with data with high seasonality and is capable for handling missing values and duplicate records. It applies holidays effects for data for forecasting purposes [10].

Anaconda:

Anaconda is free and easy to install package manager for python. It created environment to run python files with various machine learning libraries. As it can maintain all the required libraries, packages for programmer, it is much simpler for a programmer to maintain the development environment.

Jupyter Notebook:

Jupyter notebook is open source web application that allows a programmer to maintain code, description, comments, visualizations at a single place. It is very useful
for Machine Learning projects as developers can see the visualizations and code at the same place. It is user friendly and easy to start with.

After installing all the required technologies, the next step is to clean the data dataset and preprocess the data. Data preprocessing involves data extraction and dimensionality reduction. Chapter 4 discuss about the preprocessing techniques performed for this project.
Chapter 4
Data Processing

Data Sets considered for this project are crime data information of Chicago and Los Angeles cities in United States. Government public website [2] gives information about various crimes in different cities at USA. In this project two cities with different time zone and highest crime index are selected. Chicago crime data from January 2001 to October 2018 is taken from government website city of Chicago [11] and Los Angeles crime from 2010 is extracted from government website data catalog [12]. This chapter talks about the preprocessing techniques performed on these datasets.

Data Preprocessing is the important stage in any analytics/machine learning project. After extracting the required data, it is a crucial step to get the important attributes from the data set. This project analyzes and takes data from 2010 to forecast future crime. So, first step of preprocessing is to extract data of both the cities from 2010 to October 2018. Python ‘Pandas’ library helps to deal with huge volume of data sets. Crime Data from Chicago is available since 2001 but for this project, data is truncated to get records from 2010 using python Pandas library. This data truncation gives data from 2011 in both the cities which consists of 2.2 million records. Figure 2 shows a few records of Chicago crime data before preprocessing.
Figure 2: Raw data before pre-processing

Different attributes present in Chicago data set are Date with time stamp, Case number of crime, Description, Location, Arrest, Block, Ward, Community Area, Primary Type, Latitude and Longitude information of location. Out of these, Date and Case number are at most useful attributes for the study. Counting the case number with respective to day, week and month gives the daily, weekly and monthly crime rate.

The other information that can be extracted from Date attribute is month, year, season, time period of the day, day of the week. Analyzing crime count with respective to these attributes gives us interesting insights about the crime information of the city. Pandas library helps to extract time out of Date Time Stamp attribute. Time extracted from the day can be divided into four-hour time periods. Such time periods are labeled as T1, T2, T3, T4, T5, T6 on Chicago crime dataset. Morning 12 am to 4 am is identified as T1, 4 am to 8 am is identified as T2, 8 am to 12 pm is identified as T3, 12pm to 4 pm is identified as T4, 4pm to 8 pm is identified as T5 and 8pm to 12 am is identified as T6.
Python pandas has methods to extract day of the week from Date. This gives enough information to analyze weekly trends in data. With the help of Pandas `Matplotlib` library visualizations, crime count for Monday to Sunday can be analyzed. This information gives residents to take safety measures on the week days with high crime count at peek crime rate hours of the day. Extracting months from Date gives the understanding about monthly trend of crimes. These months can be divided into 4 seasons Spring, Summer, Fall and Winter. In this project, December to February is labeled as ‘Winter’, March to May is labeled as ‘Spring’, June to August is marked as ‘Summer’ and furthermore September to November is marked as ‘Fall’. This helps in understanding seasonal trends of the data and how climatic conditions effect crime rate.

After extracting different attributes from date, removing null and duplicate values Figure 3 shows the clean crime data of Chicago.

![Figure 3: Crime data after preprocessing](image-url)
Preprocessed data in figure 3 has ‘Date’, ‘Case Number’, ‘Season’, ‘day_of_week’, ‘Time Interval’ as the important attributes for analysis of crime. Chapter 5 illustrates various visualizations which helps to understand the patterns and trends in Chicago and Los Angeles crime data.
Chapter 5
Analysis of Crime Data

Crime data analysis gives meaningful details about crime patterns and trends. Python has rich library content which offers scripting to create Visualizations. This chapter compares Chicago and Los Angeles Crime activities with Visualizations. After preprocessing and diving the time of the day into different 4 hour intervals, the next step in analysis is to create Visualizations to understand the hourly occurrence of crime. Figure 4 shows the crime at different time intervals of a day.

Figure 4: Crime count at 4-hour time interval of a day
In figure 4, T1 is from 12 am to 4 am, T2 is time from 4 am to 8 am, T3 from 8 am to 12 pm, T4 from 12 pm to 4 pm, T5 from 4 pm to 8 pm, T6 from 8 pm to 12 am. Figure 4 shows that there are more number of crimes happening in late evenings from 4 pm to 8 pm. This illustration helps to understand that residents of Chicago need to be safe during evenings.

Another interesting aspect that can be analyzed with preprocessed data is weekly occurrence of crime. To do this, crime count is aggregated by considering weekly crime frequency. Python ‘Pandas’ makes weekly data aggregation simple on large datasets. ‘Matplotlib’ library in python is used to create visualizations with aggregated data.

![Crimes Vs Weekdays](image)

Figure 5: Weekly occurrences of crime of Chicago
This weekly analysis is generated on Chicago and Los Angeles Crime datasets. Figure 5 shows the weekly crime Analysis of Chicago. Figure 6 shows the weekly crime analysis of city Los Angeles. In Chicago Crime occurrence is slightly high on Fridays. On the remaining days, almost every day has equal distribution of crime. On the other hand, Los Angeles crime is also relatively high on Fridays and remains constant on the other days of the week. These plots make clear that crime is not highly dependent on day of the week but its occurrences on Friday is relatively high in both the cities.

![Figure 6: Weekly occurrences of crime of Los Angeles](image)

On continuing the analysis next similar visualization to day of the week is about month of a year. This project utilizes 8 years of data to analyze the crime. With the step of preprocessing ‘Month’ is extracted from date of crime occurrence.
Figure 7: Monthly crime rate of Chicago

Figure 8: Monthly crime rate of Los Angeles
Aggregating the monthly crime count illustrates the dangerous months is Chicago and Los Angeles. Figure 7 and 8 shows the Monthly crime count of both the cities. Figure 7 illustrates that there are more number of crimes occurring in the Months of July and August and crime rate is decreasing towards the end of the year from October to December in Chicago. Los Angeles has high crime count in the Months January, October. Tourists are suggested to be conscious before their travel during the months with high crime rate.

These monthly Analysis gives raise to another observation i.e., seasonal crime rate. After the data preprocessing months are divided into four seasons. Seasonality crime rate plot could help students and visitors to choose safer months to travel. Figure 9 shows that Chicago has high number of crimes in summer and spring. In contrast from Figure 10 it is observed that Los Angeles has slightly high crime rate in Winter. Tourists of these two cities can plan their vacations in safer months according to these results.

Figure 9: Seasonal crime rate of Chicago
Figure 10: Seasonal crime rate of Los Angeles

To understand the complexity in numbers, trend in the data and to observe the entire data through a single visualization, ‘Heat maps’ are very useful. Monthly crime count in each year over the period of eight years for both the cities is represented as heat map in figures 11 and 12. Darker color shades of blue represents high crime count in each month and lighter color shades represents lower crime count. X axis contains months 1-12 representing months from January to December. These Heat maps gives clear understanding to Police about the crime history of a city in a single glance.
Figure 11: Heat Map of Chicago Crime

Figure 12: Heat Map of Los Angeles Crime
Dataset of Chicago has the attribute ‘Primary Type’ which gives the information about type of crime happened. This helps to find the top 10 crimes over the period of 8 years as shown in Figure 13. With this understanding, residents of Chicago can be aware of highest crime type happening over years and police of Chicago can take safety measures to prevent the occurrence of this type of crime. Figure 14 shows the top 10 dangerous areas in Chicago. According to the observation, crimes happening on streets, residence and apartments is very high. These visualizations can help to create awareness to the immigrants and visitors of these cities to take necessary steps against the occurrence of crime.

Figure 13: Top 10 Crime Types in Chicago
Figure 14: Top 10 Crime happening Locations in Chicago

This chapter summarizes the weekly, monthly and yearly trend of crimes with visualizations. It is identified that Summers have high crime rate in Chicago and winters have high crime rate in Los Angeles. Both cities have high crime rates on Friday evenings. Identifying the trends and seasonality of the data, next chapter in this report describes different forecasting techniques to forecast crime for next one year.
Chapter 6

Time Series Forecasting of crime Data

Time Series is the succession of estimations of same variable gathered after some time [13]. Time Series Analysis help in understanding the underlying trends, seasonality and patterns in the data. As the variable is time dependent, trends and seasonality change along with time. Forecasting of future events can be performed on such data which is dependent on Time.

In this chapter, crime data is forecasted using previous events that are dependent on time. To demonstrate this with an example, next month sales of a grocery store is an unknown random variable. But this value can be relatively closer to last month sales data. So, to forecast next month sales we consider past few months sales information. But to forecast sales after a month in next year, we need to observe the trends and patterns in the sales data for this year and last year. Here the assumption is January 2020 sales can be like January 2019 and January 2018. But forecasting sales for next three years is even more random as variables change along with time and last year data is less likely to be useful. So, the further in future we try to forecast the more uncertain it is to predict [14].

This chapter discusses time series forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA), Auto ARIMA, Exponential Smoothing Model
(Holt’s Winter) and Facebook open source API prophet. This project compares the forecasting results of different methods and compares the forecasting results between Chicago and Los Angeles.

6.1 ARIMA:

ARIMA is a forecasting technique that estimates the future values of a time series based completely on its own latency. [15]. ARIMA is a general model which is accurate enough to remove residual autocorrelation. The input time series to ARIMA model should be a stationary time series and this stationarity is achieved by either differencing or logging. A time series is said to be stationary if its mean (average), standard deviation, variance, auto correlation etc. are standard with time [16].

The first step for implementing ARIMA is to make the series stationary. It is important to find that given series is stationary or non-stationary. As mentioned, stationary series have constant mean, variance with time. They are just random series like white noise. On the other hand, non-stationary series have trend and seasonality. Figure 15 shows Chicago Time series with weekly crime count.
Chicago data shows a decreasing downward trend and high seasonality during summers. To analyze stationarity of data, Dicky Fuller stationary test is performed using python as shown in figure 16.

```python
from statsmodels.tsa.stattools import adfuller

def test_stationarity(timeseries):
    series_rollingmean = timeseries.rolling(12).mean()
    series_rollingstd = timeseries.rolling(12).std()

    origin = plt.plot(timeseries, color='blue', label='Original')
    plt_mean = plt.plot(series_rollingmean, color='black', label='Rolling Mean')
    plt_std = plt.plot(series_rollingstd, color='red', label='Rolling Std')
    plt.legend(loc='best')
    plt.title('Rolling Mean & Standard Deviation')
    plt.show(block=False)

    print('Performing Dickey Fuller test:

    DGP = pd.Series(DF_GDP[400:600], index=DF_GDP[400:600])
    doutput = adfuller(DGP, autolag='AIC')
    for key, value in doutput.items():
        print('{}: {}'.format(key, value))

        print('Series is stationary')
    else:
        print('Series is non-stationary')
```

Figure 15: Chicago Crime Time Series

Figure 16: Dicky Fullers stationarity test on Chicago time series data.

Differencing and de trending makes series stationary. After differencing the data, Dicky Fullers test is again conducted to check stationary, constant mean and standard de-
violation on time series and results shows that the series are stationary now. Figure 17 shows the results of Dicky Fuller’s test after differencing. Differencing made the data stationary.

Figure 17: Dicky Fuller’s stationary test results on Chicago crime Data

The most important step in ARIMA is choosing the order of the ARIMA model. In general, it is said that p, d, q values specifies the order of ARIMA [17]. ‘p’ indicates AR (Auto Regressive) component, it describes number of previous values used to forecast the future value. ‘d’ is the level of logging or differencing in the component. This degree of differencing makes the series stationary. ‘q’ states the error in the model as aggregation of past error values. Auto regressive, differencing and moving average make up non-seasonal ARIMA model as a linear equation

\[X_t = a + \Phi_1 x_{d,t-1} + \Phi_p x_{d,t-p} + \ldots + \theta_1 e_{t-1} + \theta_q e_{t-q} + \epsilon_t \]
Where X_t represents the series in time, x_d is X differenced d times, a is constant, Φ and θ are model parameters [17].

In this project ARIMA model is implemented by using ARIMA package from ‘statsmodel’. p, d, q values are discovered with hyper parameter optimization. ARIMA forecasting gives the lower and upper limit for the future crime and average crimes that might occur in future. This forecasting a bit complicated for me to implement by deriving the p, d, q values. Figure 18 shows ARIMA forecasting with Chicago data. The derived p, d, q values are not good enough to make the model accurate for forecasting.

![Figure 18: ARIMA forecasting with Chicago crime data](image)

6.2 Auto ARIMA:

Auto ARIMA found to be a useful solution for this project. ARIMA requires lot of processing such as making series stationary and determination of p, d, q values. As this
project data set has 2 million records hyper parameter optimizations of ‘p, d, q values’ is time consuming. Auto ARIMA eliminates the process of calculating p, d, q values. It can directly fit the data into model and do forecasting. Python has libraries to import Auto ARIMA. ‘pmdarima’ package from ‘Anaconda’ package installer is installed to implement this model. Weekly crime count is given as input to the model. Figure 19 shows the test and forecasting results of the Chicago crime data.

![Forecasting Chicago Crimes with Auto ARIMA](image)

figure 19: Chicago crime forecasting with Auto ARIMA

6.3 Holt’s Winter Forecasting:

This method is also known as ‘Triple Exponential Smoothing’. Simple Exponential Smoothing, double exponential smoothing can be used to forecast time series. Triple Exponential Smoothing is more suitable for data with high seasonality and trend. Engineering Statistics handbook says that past observations are weighted equally in single moving averages. In contrast in exponential higher value weights are assigned to recent values. This summarizes that older observations have relatively less weights than new observations [18]. The equal of Single Exponential Smoothing is given as
\[S_t = \alpha y_{t-1} + (1-\alpha)S_{t-1} \quad 0 < \alpha \leq 1 \quad t \geq 3. \]

\(S_t \) stands for smoothing observation, \(y \) stands of original observation

Subscripts are time periods 1, 2, 3...n.

\(\alpha \) is the smoothing constant

This single Exponential Smoothing is for time series data with no trend and seasonality.

To deal with trends in the data, two constants are required in equation. The two equations in double exponential smoothing are

\[S_t = \alpha y_t + (1-\alpha)(S_{t-1}+b_{t-1}) \quad 0 \leq \alpha \leq 1 \]

\[B_t = \gamma (S_t-S_{t-1}) + (1-\gamma)b_{t-1} \quad 0 \leq \gamma \leq 1 \]

\(\alpha, \gamma \) are the smoothing constants. [18]

The first equation adjusts \(S_t \) directly for the trend of the previous period, \(b_{t-1} \), by adding it to the previous smoothed value, \(S_{t-1} \). This contributes to removal of lag and so that \(S_t \) is now an appropriate current value. The second equation improves the trend, which is showed as the difference between the last and its previous value. This equation is different from basic single exponential smoothing as the trend is included here [18].

There are many cases where data shows trend and seasonality. In figure 15, Chicago time series data observed as high downward trend and high seasonality. Every year crime count is increasing in summer and decreasing in winter showing seasonality. For data like this to forecast future crimes, both trend and seasonality need to be considered. There comes the need of third level of Exponential Smoothing [18].
\[S_t = \alpha \frac{y_t}{I_{t-L}} + (1-\alpha) (S_{t-1} + b_{t-1}) \]
complete Smoothing

\[b_t = \gamma (S_t - S_{t-1}) + (1-\gamma) b_{t-1} \]
Trend Smoothing

\[I_t = \beta \left(\frac{y_t}{S_t} \right) + (1-\beta) I_{t-L} \]
Seasonal Smoothing

\[F_{t+m} = (S_t + mb_t) + I_{t-L+m} \]
Forecast

‘\(y \)' is the observation, ‘\(S \)' is the smoothed value, ‘\(b \)' is the trend indicator

‘\(I \)' is the represents seasonality, ‘\(F \)' is \(m \) periods a head prediction, ‘\(t \)' represents a time interval. \(\alpha \), \(\beta \), and \(\gamma \) are time intervals. [18]

In this project, Holt’s Winter (Triple exponential Smoothing) is considered for crime forecasting. Project implements Holt’s Winter in python. From python library ‘statsmodels’ Hots and Exponential Smoothing packages need to be imported. Data is divided into train and test samples in such a way that 2011 to early 2016 is considered for training and mid 2016 to 2018 October is considered for testing. Holt’s winter model is applied on training data and plotted with ‘matplotlib’ library for forecasting.
Figure 20: Train, Test and Forecasting of Chicago Crime Data.

Figure 21: Future forecasting (2019 to 2020) of Chicago Crime
Holt’s Winter model is applied on Los Angeles Crime data to forecast the future crime. Figure 20 shows the train, test and forecasting of Chicago crime per week with available data. Figure 21 shows the future crime forecasting on Chicago crime data for 2019 to 2020. Figure 9 and 10 represents the same with Los Angeles crime data. Forecasting shows that there are around 5500 crimes per week in Chicago for next one year.

6.4 Facebook Prophet:

Prophet is forecasting model for time series data which can handle yearly, weekly, and daily seasonality including holiday effects. When the data is time dependent and has high history for seasonality prophet is the best model to forecast [10]. According to Prophet documentation in GitHub, Facebook uses prophet for many reliable forecasts and
robust to outliers and missing data. Prophet API is available both in R and Python for forecasting. It is an open source library and can be installed using Anaconda.

In this project, monthly weekly and daily data forecasting is performed on Chicago and Los Angeles crime data. Forecasting for future time is mentioned in the model. Facebook prophet also gives yearly weekly and monthly trend of crimes. These insights from visualizations give the understanding of underlying patterns in the data.

Figure 23: Forecasting with Facebook prophet library on Chicago data
Figure 24: Components of trend in Chicago crime data

Figure 25: Forecasting with Facebook prophet library on Los Angeles data
In this report, chapter 7 mentions the model correctness and error measurement techniques for the forecasting models. Results of the project work are discussed with previous work results mentioned in chapter 2.
Chapter 7

Error Measurement

This project forecasts the crime rate with different methods such as Auto ARIMA, Holt’s Winter and Facebook prophet. The crucial step here is to verify the model correctness by doing error measurement. It is important to know the deviation of forecasting to the actual data. For this process, initially data is divided in training and testing and the error analysis is performed on testing data. Later, the model is applied to future dates to predict the crime rate. This chapter describes the error measurement technique used for this project.

One of the better ways to measure error for forecasting techniques is Mean Absolute Percentage Error (MAPE). [19] Good forecasting models have low values of MAPE. In forecasting, forecasting value can be less than or greater than the actual value. For example, in this project if the number of actual crimes are 570 per week, forecasting value can be either 540 or 600. In both the cases the absolute error |570-600| or |570-540| is 30. Mean of all such absolute errors is calculated and percentage is taken of such Mean Absolute Errors in MAPE. Figure 27 gives an example to understand MAPE.
MAPE for the models is calculated using python ‘sklearn mean absolute error’ library. Error comparisons of forecasting models with MAPE is shown in Table 1. MAPE for one year ahead forecasting on Chicago data with Auto ARIMA is 31 and with Los Angeles is 6.5. MAPE with Holt’s winter for one year forecasting is 8.9 with Chicago data and 5.5 with Los Angeles data. Facebook prophet has given better results compared to Holt’s winter and ARIMA with MAPE of 4 and 4.02 with Chicago and Los Angeles data. Even though in this project, Facebook prophet worked well, in practical cases it is a bit difficult to do parameter tuning with it.

Table 1: Error comparisons of forecasting models

<table>
<thead>
<tr>
<th>Model</th>
<th>MAPE with Chicago weekly data</th>
<th>MAPE with Los Angeles weekly data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto ARIMA</td>
<td>31</td>
<td>6.5</td>
</tr>
<tr>
<td>Holt’s Winter</td>
<td>8.9</td>
<td>5.5</td>
</tr>
<tr>
<td>Facebook Prophet</td>
<td>4.2</td>
<td>4.02</td>
</tr>
</tbody>
</table>
‘Forecasting Crimes Using Autoregressive Models’, mentioned in Literature Review chapter states ARIMA is the best model to forecast Chicago crime data in 2015 with MAPE of 16 over 6 months forecasting. In this project, Holt’s winter and Facebook prophet libraries are better with one year forecasting on Chicago data with MAPE 8 and 4. This shows an improvement in forecasting compared to the ARIMA model mentioned in ‘Forecasting Crimes Using Autoregressive Models’.
Chapter 8
Conclusion

Time Series Analysis and Forecasting is performed with several visualizations and statistical models in this project. Holt’s winter and Facebook prophet forecasting models gave good forecasting for next one year with less MAPE. According to forecasting results for the year 2019 Chicago crimes are slightly decreasing with high around 5000 crimes per week in summer and low around 1000 crimes per week in winter. Results show that Los Angeles crime vary around 4000 per week. This forecasting results can help police to take necessary precautions according to the crime rate.

Crime Data analyzing with visualizations states that Summers are dangerous in Chicago and Friday evenings from 4 pm to 8 pm have high crime occurrences. This helps tourists, students and immigrants to plan safer travels and stay safe during their stay. Los Angeles have slightly high crimes during winter and Friday evenings compared to other seasons and days. The overall trend with crime data is decreasing in both the cities from 2011 to 2018. There are more thefts in Chicago on streets from past 8 years. Government of USA can utilize these results to increase more police force during hotter months and weekends in Chicago.

With this project work, I want to let the reader know that data analysis, visualization and forecasting could be used for a large variety of data sets, which could reveal
things that haven’t been observed before. This could help the targeted audience in understanding of how things are going to be for the foreseeable future with some confidence backed by the algorithms developed by geniuses. In my experience analyzing crime data, I developed a positive hope for safer future after observing a downward trend in the crime rate. This project excited me about the possible constructive impact it might create in future. Future work with this analysis is to predict the location of crime and tag the crime activities to a geographical map.
REFERENCES

